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Mean drift currents due to spatially periodic surface waves in a viscous rotating fluid 
are investigated theoretically. The analysis is based on the Lagrangian description 
of motion. The fluid is homogeneous, the depth is infinite, and there is no continuous 
energy input a t  the surface. Owing to viscosity the wave field and the associated mass 
transport will attenuate in time. For the non-rotating case the present approach yields 
the time-decaying Stokes drift in a slightly viscous ocean. The analysis shows that 
the drift velocities are finite everywhere. In  a rotating fluid i t  is found that the effect 
of viscosity implies a non-zero net mass transport associated with the waves, as 
opposed to the result of no net transport obtained from inviscid theory (Ursell 1950). 

1. Introduction 
It was demonstrated theoretically by Stokes (1847) that small-amplitude surface 

waves indme a mean flow (mass transport) in the direction of wave propagation. 
Stokes’ calculations are valid for a non-rotating inviscid fluid (irrotational motion). 
However, when applying Stokes theory to ocean waves, rotation must be taken into 
account. The most amenable case for theoretical studies is that of surface waves that 
have been generated by a distant agency. Such waves are known as swell. It is a 
well-known fact of observation that, a t  a sufficiently far distance from the generating 
(storm) area, they can reasonably well be treated as monochromatic wavctrains. For 
such waves Ursell (1950) demonstrated that in an inviscid ocean there could be no 
net steady mass transport. Similar conclusions were reached by Pollard ( 1 9 7 0 ~ )  for 
a stratified rotating inviscid fluid. 

The pertinent question to be raised is: what does the effect of viscosity do to the 
mass transport in a rotating ocean Z Returning to the non-rotating case, it is worth 
recalling that the inclusion of a small viscosity into the problem produces some rather 
surprising results. In  particular we refer to  the papers by Longuet-Higgins (1953, 
1960). Here he demonstrates that the inclusion of a small viscosity not only modifies 
the motion in thin boundary layers near the surface and bottom, but also produces 
significant changes from Stokes’ solution in the interior! Most notably the mass 
transport velocity gradient just below the surface boundary laycr was found to be 
twice the value obtained from Stokes solution. 

Liu & Davis (1977) incorporated viscous attenuation into the problem (some of 
their results have been criticized by Dore 1978 and Craik 1982), and obtained a finite 
surface velocity when the depth increased towards infinity. This in contrast with 
Longuet-Higgins’ (1953) apparent paradox of an infinite surface drift velocity for this 
limit (Huang 1970). The present paper discusses this point further. 

The effect of rotation does limit the wave-induced mass transport to  within an 
Ekman layer. For undamped surface waves (assuming an unspecified energy input 
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from the wind) this was demonstrated by Madsen (1978) for a steady mean flow. 
However, when the ratio of the Ekman depth to the Stokes depth approaches infinity, 
the surface velocity in Madsen's analysis tends to infinity. A revised and corrected 
analysis of this problem has been performed by the author (Weber 1983). By 
prescribing the vertical wind-stress at the surface in such a way that the energy input 
from the wind exactly balances the energy loss in the wave motion due to viscous 
dissipation, a correct set of boundary conditions is obtained. The analysis then yields 
finite mass transports everywhere. 

For tidal waves Lamoure and Mei (1977) demonstrate that the mass transport 
occurs in the bottom Ekman layer. 

The present paper considers the attenuated swell problem in a rotating ocean, 
which is different from the wind-influenced case referred to  above. The effect of 
viscosity yields results that  differ from those obtained from inviscid theory (e.g. Ursell 
1950). The purpose of this paper is to  present these results together with their 
underlying assumptions. 

We have chosen to use a Lagrangian description of motion. This turns out to be 
very convenient for the present problem. I n  particular, the second-order mean motion 
gives the mass transport velocity directly. 

The mathematical formulation of the problem is given in $2. In  $3  the first-order 
attenuated wave solution is given, and $4 yields the equations €or the attenuated 
mean flow (mass transport). Since the non-rotating case has given rise to some 
controversy in the past, we devote $5  to the discussion of this problem. In $6 the 
full solution for a rotating fluid is presented. A summary together with a brief 
discussion of some further consequences of using a Lagrangian formulation are given 
in $ 7 .  

2. Mathematical formulation 

The model of the problem is the same as in Weber (1983). To recapitulate briefly, 
we consider a homogeneous incompressible viscous fluid rotating about the vertical 
axis with a constant angular velocity v, wheref is the Coriolis parameter. The depth 
of the fluid is infinite, and the horizontal extent is unlimited. When undisturbed, the 
surface is horizontal. A Cartesian coordinate system is chosen such that the (x, y)-axes 
are situated a t  the undisturbed surface and the z-axis is positive upwards. 

The motion is described by using a Lagrangian formulation. Let a fluid particle 
(a ,  b ,  c) initially have coordintes (xo, yo, zo).  I ts  position (x, y, z )  a t  later times will then 
be a function of a ,  b ,  c and time t .  Velocity components and accelerations are given 
by (q, gt, z t )  and (x,,, ytt ,  zt t ) ,  respectively, where subscripts denote partial differ- 
entiation. By including rotation, the equations for conservation of momentum and 
mass can be written (Lamb 1932; Pierson 1962) as 
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where p is the pressure, po is the constant density, v is the constant coefficient of 
kinematic viscosity and g the acceleration due to gravity. The operator connected 
with the pressure terms and the continuity equation is the Jacobian. The Laplacian 
operator V2 becomes rather complicated when expressed in Lagrangian form, 
involving the Jacobian of a Jacobian. The reader is referred to Pierson (1962) for the 
explicit expression. 

The equations (2.1)-(2.4) will be solved by considering small perturbations from 
the basic state (a ,  b ,  c ) .  According to Pierson (1962) we write the solutions 

Here we have put an arbitrary pressure term equal to zero. The expansion parameter 
E is essentially proportional to the amplitude of the initial surface wave, as will be 
demonstrated later. 

The free surface is given by c = 0 for all times. This is a linear kinematic boundary 
condition as opposed to the equivalent nonlinear Eulerian version. This shows some 
of the advantages by using a Lagrangian description for problems involving a freely 
moving boundary. Alternatively, in Eulerian form, one will have to use some sort 
of curvilinear coordinates along the free surface (Longuet-Higgins 1953). 

The free surface is given by z = 5 in Eulerian form. By the aid of (2.5) the 
appropriate Lagrangian description of the surface form becomes 

5 = E Z ( 1 )  + E 2 2 ( 2 )  + . . . (c  = 0). (2.6) 

Since we work in an infinitely deep ocean, all perturbation quantities are assumed 
to vanish when c + -  03. 

For the swell problem, the dynamic boundary condition a t  the free surface is that  
of vanishing normal and tangential stresses; see Unliiata & Mei (1970) for explicit 
expressions to O ( E )  and O(e2) .  

3. The attenuated primary wave 
The linearized version of (2.1)-(2.4), or the solution to O ( e ) ,  yields the primary wave. 

We are looking a t  an (idealized) model of ocean swell, i.e. relatively short, high- 
frequency gravity waves. This means that the problem can be considerably simplified. 
Typically, such waves will have wavelengths h of around 100 m and frequencies CT 
of about 1 s-l. With a value of the inertial frequency f - low4 s-l, the Rossby radii 
of deformation for such waves are of the order lo5 m. Hence we can safely neglect 
the effect of rotation on the solution to O(s). 

Letting the wave propagate along the x-axis (a/ab = 0 in the perturbations) and 
taking y(l) = 0 since we neglect rotation, the first-order equations then reduce to 
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where Vl, = a2/aa2 + d2/ac2. We have here assumed that 

acx,, Yo, zo)/a(a, 6 ,  C )  = 1 + 0 ( € 2 ) ,  

which will be verified later. 
Formally (3.1) is identical with what one obtains from a linearized Eulerian 

description. Therefore the solution of (3.1) can be obtained directly from Lamb (1932, 
p. 625). 

However, let us make one further simplification. Consider the viscous lengthscale 
y-' defined by 

y-l = (y, (3.2) 

which is commonly encountered in analyses of viscosity-influenced wave motion (e.g. 
Harrison 1909). Here u = (gk): is the frequency of small-amplitude deepwater waves 
with wavenumber k .  The solution to O(s) involves the ratio k / y ,  and in what follows 
we shall assume tJhat 

This is in fact seen to be very well fulfilled for the kind of waves we are looking at ,  

k / y  4 1 .  (3.3) 

even with a turbulent eddy viscosity in (3.2). 
Introducing the attenuation coefficient p by 

ak2 p = 2vk2 = ~ 

Y 2  ' 

a set of normalized solutions can be written as 

1 k 
U y 

dl) = - - ekc --eye (cos yc + sin yc )  cos (ku - crt) 

eye (cos yc-  sin yc)  
Y 

1 k2 
z(1) = e-bt { [ ebc - - eyc sin yc sin (ka - crt) 

0- Y 2  

(3.4) 

(3.5) 

- ~ [ e y c c ~ ~ y ~ - e ~ ~ ] c ~ ~ ( k u - - n t ) + O ( ~ ) ) ,  (3.6) 
Y 2  Y4 

p ( l )  = po u e-bt (eye cos yc - 2ekc) cos (ka - ~ t )  
Y 

+e~cs inycs in(ka-d)+O - . (3.7) 

Here we have let the waves propagate along the positive x-axis. Normalized in the 
present context merely means that an arbitrary constant of order unity has been 
incorporated into the expansion parameter e. 

(31 
IC2 i 

To this order the surface elevation 5 can be written from (2.6) as 

k 5 = ez(l)(c = 0) = e-e-bt sin (ka-ut ) .  (3.8) v 

Assume that we initially start out with a monochromatic wave 5 = C0 sin (ka - d). 
By comparison with (3.8), we see that our expansion parameter can be written 

e = C0Ua/k (3.9) 

(Weber 1983), or proportional to the wave amplitude as stated in $2. 
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From (3.5) and (3.6) we find for the initial volume of the fluid element in question 
that a(xo, yo, z,)/a(a, 6, c) = 1 + O(e2) ,  as previously assumed. 

To a first approximation, neglecting the effect of viscosity, we obtain from (3 .5)  
and (3.6) that a ‘Fourier component’ in Lagrangian formulation yields a trochoidal 
surface shape a t  a given instant. The effect of a small viscosity introduces a slight 
change towards a more symmetric form. In  fact, for friction-dominated flow (creeping 
motion) the surface shape is purely sinusoidal (Tyvand & Weber 1983). 

4. The attenuated secondary mean flow 
For the equations to O(e2)  we again refer to  Pierson (1962). Averaging the second- 

order equations over one wavelength, and including rotation, we obtain for the 
horizontal mean flow 

1- 1- 
(1) -- (1) (1) Pa Xu Pc za 

P O  P O  
- @ + f y p  + v?@L = -- (1) 

+ v[2xp zga + 241) xi:’, + 2 z m  

+ 241) 2& + xi;) VEx(1) + xi;’ VEZ‘1’1, (4.1) 

(4.2) 
where the overbar denotes spatial average. We have here assumed that there is no 
mean horizontal pressure gradient to  O(e2).  The mean displacement to O(e2) of a 
particle is given by 

It is a direct measure of the net mass transport associated with the waves (see 
Andrews & McIntyre 1978; Weber 1983). 

Following Weber (1983), we define horizontal mean-flow components u, v to O(e2)  

- yp - f z p  + vyg), = 0, 

(z,y,z) = (a+e2%(’), b + e 2 $ 2 ) , ~ + e 2 z ( 2 ) ) .  (4.3) 

and a complex velocity W as 
W = u+iv. (4.5) 

Inserting for x(l),dl) and p(l) from (3.5)-(3.7) into (4.1) and (4.2), and using the 
definitions above, the equation for the mean motion reduces to 

] (4.6) 
4Y 

[ k  
v W,, - W, - ifW = vG a k 3  eP2bt 8eZke -- eYc (cos yc - sin yc) . 

Here we again have utilized the fact that y % k .  This means that terms proportional 
to exp (yc),  ( k / y )  exp (yc), etc. have been neglected inside the square brackets on the 
right-hand side of (4.6). This can be done because, when integrating, one finds that 
these terms only introduce small corrections to the mean velocity or the mean-velocity 
gradient. 

From Unluata & Mei (1970, equation (36)), the boundary condition to O ( 2 )  in the 
horizontal direction can be written 

Ga2 c’ wc = -2----(xpxp)) ( c =  0). 
k2 at (4.7) 

We notice that the right-hand side is proportional to k*/y’.  So, in the present limit 
of small k / y ,  we have approximately 

wc = 0 (c = 0). (4.8) 
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I n  the case of no rotation, the condition (4.8) is equivalent to that obtained by 
Longuet-Higgins (1953, 1960) and Unluata & Mei (1970) for the Lagrangian mean 
velocity in the absence of viscous attenuation. 

Furthermore, we must require 

w+o ( c + - a ) .  (4.9) 

5. The Stokes drift 
First we consider the non-rotating case (f = 0, v = 0, u = W), as this subject has 

attracted the interest of so many writers since Stokes’ analysis of the problem in 1847. 
As mentioned in $1 the inclusion of viscosity was shown to alter the mass transport 
drastically; also in the interior (Longuet-Higgins 1953). However, unless energy is 
transferred to the waves through the action of wind etc., the waves must attenuate 
due to friction. At first sight this effect might seem to be small, but, as demonstrated 
by Liu & Davis (1977), i t  should be included when the mass transport is considered. 

In  the non-rotating case (4.6) becomes 

1 4Y eYc (cos yc - sin yc) . vu,, - ut = VG c7k3 e-zpt 

We note that the form of the right-hand side depends crucially on the attenuation 
coefficient (3.4). If we, for example, attempt to neglect viscous attenuation in the 
computation of the first-order solution, the pressure p ( l )  from (3.7) would lack 
the term proportional to -2(k2/y2) exp (kc ) .  As a result, the square brackets on the 
right-hand side of (5.1) would contain a term 4 exp (21%~) instead of 8 exp (2kc). 
Secondly, when solving (5.1) the importance again becomes evident. For a solution 
of the form exp ( - 2pt + 2kc), we notice that the acceleration term ut and the friction 
term vu,, contribute equally to the solution, since /3 = 2vk2.  

Equation (5.1) is valid in the whole fluid, and determines the wave-induced drift 
to O(c2). To compare with the previous calculation of Longuet-Higgins (1953, 1960) 
and Unluata & Mei (1970) (hereinafter referred to as LH and U&M), we separate our 
fluid domain into a surface boundary-layer region and an interior. Since U&M work 
with a Lagrangian description, i t  is most convenient to compare with their results. 
For the boundary-layer region 0 < JcI < y-l the leading terms in (5.1) are 

u,, = - 4g vk2y  eYc (cos yc - sin yc) ,+at. ( 5 . 2 )  

This is equal to  U&M’s equation (35), apart from the attenuation factor exp (-2/3t). 
For the interior (5.1) reduces to 

(5.3) vu,, - ut = 8vg v k 3  e2kc-zflt. 

If we had assumed p = 0 from the outset, the right-hand side of (5.3) would contain 
a factor 4 instead of 8. Neglecting the time dependence, (5.3) would then be equivalent 
to U&M’s equation (45) for infinite depth and zero horizontal mean pressure gradient. 

The boundary condition a t  the surface for the total mass transport velocity is given 
by (4.8), or 

which is the same as that of LH and U&M. 
It is implicitly assumed in the works of LH and U&M that  the wave field is 

maintained by some external device. By taking the steady mass-transport gradient 
to be zero at the surface, they find that the vorticity a t  the bottom of the surface 
layer becomes constant. Owing to diffusion into the interior, the mean horizontal 
momentum then will grow above all limits in an infinitely deep ocean. 

(5.4) u, = 0 ( c  = O),  
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The present paper considers a somewhat different approach. We assume that the 
wave field (3.5)-(3.7) is established a t  t = 0, and that no further energy is supplied. 
Then the energy and momentum will remain finite for all times. I n  fact, owing to 
viscous dissipation, the whole motion will finally tend to zero. It is therefore natural 
to assume that the boundary condition at infinity is given by (4.9), or 

u+o (c+ -co) .  

A particular solution u ( P )  of (5.1) can be written 
(5.5) 

Below the thin vorticity layer of thickness y-l = (2u/a)i we note the interesting result 
that our solution initially coincides with Stokes' inviscid solution. It is obvious from 
(5.6) that, although the correction to the Stokes flow due to viscosity is small even 
a t  the surface (proportional to kly), the associated gradient a t  the surface is of order 
unity. This means that the particular solution u ( p )  does not fulfil the boundary 
condition (5.4). Accordingly, the complete solution must also include a solution dh) 
of the homogeneous version of (5.1); that is, 

(5.7) 

(5.8) 

U ( h )  --to ( c+-  03). (5.9) 

uug - U/h)  = 0, 

uf') = - u $ P )  = 2G gk2 e-2Pt (c = O),  

subject to the boundary conditions 

The initial condition is 
U ( h )  = 0 ( t  = 0). (5.10) 

The set (5.7)-(5.10) is usually solved by Laplace transforms, and this will be done 
in $6  for the full problem including rotation. We shall see that this diffusive solution 
is identical with that obtained by Longuet-Higgins (1969), introducing the concept 
of virtual wave stress a t  the surface. 

It is appropriate here to make a few comments on Longuet-Higgins (1953, 1960) 
result of twice the Stokes gradient just below the surface boundary layer. From (5.2), 

(5.11) 
with /3 = 0, we obtain 

u, = 4l3 ak2(  1 - eYc cos yc),  

where we have used, as did L&H and U&M, the assumption that this particular 
solution satisfies u, = 0 a t  c = 0. Hence, from (5.11), 

U ,  = 4G;2,k2, (5.12) 

when IcI $ y-l, which is Longuet-Higgins' famous result. However, if we integrate 
(5.3) for the interior (with a/at = 0, = 0 and 4 instead of 8) and match the interior 
gradient with (5.12) in the limit c + 0, further integration yields infinite mass-transport 
velocities in an infinitely deep ocean. This result is known as Longuet-Higgins' 
paradox. 

The present way of looking at the problem avoids this difficulty since the particular 
solution (5.6) is finite a t  the surface. However, it  does not fulfil the boundary 
condition uc = 0 ( c  = 0), and accordingly the second-order vorticity given by (5.8) 
must immediately start to diffuse inwards from the surface at  t = 0. As mentioned 
before, Longuet-Higgins (1 960, 1969) considered a similar diffusion of second-order 
mean vorticity from the bottom of the surface layer. 

If the gradient (or flux) a t  c = 0 was constant, (5.7) would have the familiar 
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solutions proportional to the integrated complementary error function of argument 
c/2(vt)i. However, with a time-dependent boundary condition as in (5.8), the solution 
becomes more complicated. It might therefore be instructive to look a t  a simple 
approximate solution. Such a solution can be obtained by momentum/heat balance 
integral methods analogous to those of von Karman (1921) and Pohlhausen (1921) 
for a viscous boundary layer, or Goodman (1958) for heat diffusion. In  principle, the 
diffusion equation (5.7) is integrated over a viscous boundary-layer depth &(t). The 
exact solution is approximated by a polynomial in c. The coefficients in the 
polynomial are determined by the boundary condition (5.8) and the additional 
conditions dh) = up) = = 0 a t  c = -6( t ) .  Upon integration, this leads to a 
first-order differential equation for 6, subject to the initial condition 6(0) = 0. The 
result is 

u(h) = " 2 g k 2 S  1 +- e-w, (5.13) 

(5.14) where 

We should point out here that (5.13) is valid within the boundary layer, i.e. for 
-8 < c < 0. Hence u ( ~ )  is always bounded. For small times the diffusion layer 
propagates into the fluid analogously to the constant-flux solution, i.e. 

6 - (124:. (5.15) 

If we form the fractional error A = (vu,, -ut)/vu,,, and insert values for the surface 
c = 0, we find A = +k2S2. This error must be small, which shows that the approximate 
solution (5.13) is valid for small values of the dimensionless parameter k6. 

The analysis above for the induced mean motion might apply to deep-water waves 
in a narrow channel, when there is no continuous energy input a t  the surface, and 
provided that the effects of endwalls can be neglected. However, for situations in the 
laboratory, these requirements clearly cannot be met. Here horizontal pressure 
gradients and/or return flow will result from the finite geometry of the model. 
Furthermore, a wavemaker must be operated in order to maintain the wave field. 
We shall therefore not attempt to compare our results with existing laboratory 
experiments (e.g. Russell & Osorio 1957 ; Longuet-Higgins 1960). 

The main point of the present paper is to show that  neither Stokes' classic solution 
(eventually modified by viscosity) nor existing laboratory experiments can be used 
for estimating wave drift associated with ocean swell. This is due to the importance 
of the joint action of viscosity and rotation, as will be demonstrated in $6. 

3 0  ( 3 
31 
k 

6 = - (ezD - 1 )i. 

6. The rotating ocean 
We now return to the full problem including rotation. I n  addition to the Stokes 

depth and vorticity-layer depth, rotation introduces an Ekman depth into the 
problem. By definition 

1 
2k 

L = - (Stokes depth), 

vorticity-layer depth), 
1 

Y 
= c); (Ekman depth). J 
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The ~olut~ion of (4.6) is obtained in the usual way by writing W as W(P) + Wch), where 
W'P) is a particular solution of the inhomogeneous equation, and W(h) is a solution 
of the homogeneous equation. 

Utilizing the fact that 12/D2 = f / a 4  1,  the particular solution can be written 

This is just the attenuated Stokes drift which is deflected somewhat to the left (on 
the Northern Hemisphere) of the wave propagation direction. The rate of deflection 
is seen to  depend on the ratio of the Stokes depth to the Ekman depth. Why this 
solution yields a flow component to the left, is easy to see. Consider flow in a rotating 
system in the presence of a pressure gradient. Then there is a tendency towards 
geostrophic balance in the regions where viscosity does not dominate. We note 
from (4.6) that, below the thin vorticity layer, the right-hand side is positive. This 
means that the mean flow experiences the forcing from the primary waves equivalent 
to an imposed pressure gradient. When we change sign in (4.6), we see that this 
corresponds to a force in the negative x-direction. Hence a tendency towards balance 
with the Coriolis force must induce a flow component in the positive y-direction, i.e. 
to the left of the wave propagation. 

The solution of the homogeneous problem Wh) is obtained by Laplace t,ransfor- 
mation. The boundary conditions are 

(6.3) 

W(h)+O (c+--co), (6.4) 

W p  = - W(P)  c ( c  = O) ,  

where W(P) is given by (6.2). The initial condition is 

By using the shifting and convolution properties of Laplace transforms, we get 

This solution describes the transient development of an Ekman current subject to 
a 'stress' (6.3) a t  the surface which decays exponentially in time. 

By the substitution r = -i@ the integral in (6.6) can be expressed in terms of 
tabulated error functions for complex arguments (see Abramowitz & Stegun 1965, 
equations (7.1.3), (7.4.34) and table (7.9)). 

Let us make a small digression to  the non-rotating case. Putting f = 0 in (6.6) and 
changing variables by t ,  = t -6 ,  we obtain 

This is exactly equal to Longuet-Higgins' (1969) solution (equation (4.6), p. 378) 
obtained by the concept of virtual tangential wave stress a t  the free surface. As 
pointed out before, this solution should be added to the Stokes flow (5.6) to yield the 
total mass transport in the interior of the fluid. 

We return to the rotating ocean, and consider the surface flow. Initially we start 
5 B L M  137 
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FIGURE 1 .  The various components of the mass transport velocity a t  the surface as  function of time 
for v = 10 cm2/s. The waves propagate along the x-axis with 5, = 1 m and A = 100 m. -, ---, 
z- and y-components of the Ekman flow (6.6) ; . . . , -.-, x- and y-components of the modified Stokes 
drift ( 6 . 2 ) .  

out with the (modified) Stokes solution (6.2). For small times the full solution at the 
surface can be written 

We note that rotation introduces the expected deflection of the vclocity vector to 
the right of the initial flow direction. 

The attenuation factor p in the solution cannot be arbitrarily chosen since i t  
depends on the flow parameters. This means that the solution (6.6) cannot simply 
be compared with Fredholm’s solution (Ekman 1905) by setting p = 0 as a particular 
example of constant wind forcing. I n  fact, if p+O, or equivalently v+O when k is 
finite, then LID+ 00. Hence W ( P ) + O  and W(h) + O  in this case. This confirms Ursell’s 
(1950) result that there is no net mass transport associated with ocean swell in a 
rotating inviscid ocean. However, the assumption of zero viscosity is not strictly valid 
for any fluid. The present paper demonstrates that even small viscosities result in 
a not negligible net mass transport. 

In  practice L and D could well be of the same order of magnitude in the ocean when 
relevant eddy viscosity coefficients are considered. A typical wavelength h = 100 m 
gives a Stokes depth L of about 8 m. Take v = 10 cm2/s, or about lo3 times the 
molecular value. This is not an unreasonable value for the upper layer of the ocean. 
With f = s-l, we get an Ekman depth D of about 4.5 m. In figure 1 we have 
displayed the different contributions to the mean current a t  the surface c = 0 for this 
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FIGURE 2. Hodograph of the total surface mass transport velocity W(p)+ W(h' from (6.2) and (6.6) 
for the same situation as in figure 1 .  The numbers denote time in hours after the onset of motion. 

4 

4 I - I I I 

0.5 0 -0.5 -1.0 

v (cm/s) 
FIGURE 3. Same as in figure 2, but now for v = 1 cm2/s. 

particular example. For simplicity the integral in (6.6) was solved numerically. The 
initial amplitude of the wave travelling along the positive x-direction was taken to 
be 1 m. Apart from the expected flow component along the direction of wave 
propagation, we note that the modified Stokes flow has an additional component to 
the left of this direction, as explained in connection with the discussion of (6.2). The 
latter is in fact the larger in this example. It is interesting to note that the oscillatory 

5-2 
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FIQURE 4. Horizontal mean displacements 2, g (=  E ~ E - - ( ~ ) ,  e2g(2)) a t  the surface for various values of 
the viscosity coefficient. The waves propagate along z with 5, = 1 rn and A = 100 m. -, 
v = 10 cm2/s; ---, 1 cm2/s; . . . , 0.1 cmz/s. Numbers denote time in hours after the onset of motion. 

Ekman flow quickly becomes larger than the initial rotation-modified Stokes flow. 
When the forcing of the primary waves disappears (here after about 55 h), the induced 
motion continues for a long time as weakly damped inertial oscillations. The inertial 
period, here about 17a h, is easily detected from the graph. 

In  figure 2 we have plotted a hodograph of the total surface mass-transport velocity 
for the same situation as in figure 1 .  The numbers on the graph denote time in hours 
after the onset of motion. As mentioned before, we notice that the motion finally 
reduces to inertial oscillations. The radius of the approximate inertial circles decreases 
in time due to viscous dissipation, being about 40 m after 72 h. 

When the viscosity becomes smaller, the viscous damping is less pronounced. But 
also the modified Stokes flow (6.2) and the induced Ekman current (6.6) become 
smaller. This is obvious from figure 3, where we have displayed the surface hodograph 
for the same case as before ( A  = 100 m, c0 = 1 m), but with a viscosity v = 1 cm2/s. We 
note that, although the flow is small, it takes a very long time before i t  finally tends 
to zero. The computations were stopped after 96 h, and much more time is still needed 
before the spiralling hodograph ends up in the origin. 

In  figure 4 we have plotted the horizontal displacements associated with the 
second-order mean motion at the surface. The displacements are constructed from 
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averaged velocities over periods of 15 min. With the particle definition of $4, the 
curves depicted in the graph are particle trajectories. The waves propagate along the 
x-axis with a wavelength of 100 m and an initial amplitude of 1 m. The numbers on 
the plot are time in hours after the onset of streaming motion, and the black dots 
denote position a t  specific times. The three curves correspond to eddy viscosities of 
10, 1 and 0.1 cm2/s, respectively. The first value might be reasonable for surface 
waters in not too windy conditions. The second represents an average value for 
vertical diffusion in the interior of the ocean (Munk 1966). It should therefore be 
adequate for calm surface conditions. The last value of 0.1 cm2/s is probably on the 
lower side, but is kept for comparison. 

It is interesting to observe how viscosity affects the net length of a trajectory 
travelled in a given time. Actually intermediate viscosities give the longest net 
displacements. This is also confirmed by additional computations for extremely high 
(lo2 cmz/s) and extremely low cm2/s) values of v (not displayed in the figure). 
The reason for this is that, although large viscosities result in initially large velocities, 
the motion becomes quickly damped in time. Small viscosities, on the other hand, 
give small velocities. Although the damping is slower, the resulting net displacements 
need not be very large. 

It does not seem very sensible to continue the computations beyond 96 h. By that 
time a single wave phase would have travelled more than 4000 km, so it would 
probably have reached the shoreline by then. 

We observe that the general effect of the Coriolis force is to deflect the particle 
motion to the right. On average, the surface trajectories plotted here are deflected 
about 40' to the right of the wave-propagation direction. 

Results for lower levels ( c  < 0) have not been displayed, but as noticed from (6.2) 
and (6.6), the mean flow decreases exponentially with depth. At a given level the 
Ekman current (6.6) starts out with a lag in time compared to the surface value, and 
exhibits the familiar veering to the right. 

We emphasize once again that the induced Ekman current may be several times 
larger than the initial modified Stokes current. However, as observed from the 
hodographs in figures 2 and 3, when the motion is finally reduced to inertial 
oscillations, the velocities have become quite small. Therefore it does not seem as if 
the existence of swell can explain the rather strong inertial currents reported by 
Pollard (1970 b ) .  

7. Summary and discussion 
We have investigated theoretically mean drift currents due to  spatially periodic 

surface waves (swell) in a homogeneous, deep, viscous, rotating ocean. The analysis 
is based on the Lagrangian description of motion. Perturbing the displacement field 
about a mean position, we obtain spatially averaged solutions to second order in a 
small parameter e. This parameter is essentially proportional to the amplitude of the 
initial surface wave. There is no forcing from the wind, The considered waves have 
wavelengths which are small compared to the depth of the fluid, and their frequencies 
are much larger than the inertial frequency. Furthermore, the analysis assumes that 
kly = k(2v/cr)? < 1 .  Owing to viscosity, the waves, and also the induced secondary 
mean flow, become attenuated in time. 

I n  the case of no rotation, the present way of looking a t  the problem yields finite 
drift velocities everywhere. Ifwe apply the theory to ocean swell, the effect of rotation 
on the mean flow cannot be neglected. The inclusion of a non-zero viscosity leads to 
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the important result that  the associated mean flow has a non-zero mass transport. 
In  the limit of vanishing viscosity, the mass transport tends to  zero. This is in 
agreement with Ursell’s (1950) result for swell in a rotating inviscid ocean. 

We again emphasize that the use of a Lagrangian description of motion turns out 
to be very convenient for discussing viscous effects on wave-induced mean motion. 
Phillips (1977) argues that, because the equations of motion are singular to viscous 
perturbations, the streaming motion obtained with a small, but non-zero, viscosity 
does not tend to  the proper inviscid limit when v+O. The present paper sheds some 
light on this problem. First, we take the non-rotating case, i.e.f = 0, g2) = 0 in (4.1), 
(4.2). If now v = 0, then pkl) = pi1) = 0 from (3.7), and accordingly @ = 0. Hence 
there is no coupling to the wave motion, and the mass-transport velocity will remain 
undetermined for all times. However, if we let v + 0  (or y+ co) in the result (5.6) 
which has been obtained with a small, but non-zero, v ,  we regain Stokes’ classic 
solution for the mass-transport velocity. 

For the rotating case the situation is similar. Again the assumption of zero viscosity 
in (4.1), (4.2), results in a decoupling of the mean motion from the waves. The flow 
becomes undetermined in the same sense as before. But if there is any mean motion, 
i t  now must be purely inertial a t  any particular level of depth. This indefiniteness 
disappears when we let v+O in the solution (6.2). We then obtain that the 
mass-transport velocity tends to zero everywhere, as i t  should according to inviscid 
theory. However, neither in the non-rotating nor in the rotating case does the mass 
transport gradient a t  the free surface c = 0 tend to the proper inviscid limit when 
v + 0, exemplifying the singular nature of the problem. 

The present study assumes the existence of monochromatic waves. I n  the ocean, 
however, the wave energy is distributed over a finite band of frequencies; although 
this can be quite narrow for ocean swell. The present theory also neglects interaction 
between waves and disintegration of wavetrains due to instability processes. 
Further, air effects are assumed to  be negligible. Still i t  is hoped that this relatively 
simple analysis of an idealized situation may shed some additional light on the 
problem of induced mean motion due to surface waves. 
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